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SUMMARY 
A general numerical method for the solution of the complete Reynolds-averaged Navier-Stokes equations 
for 2D or 3D flows is described. The method uses non-orthogonal co-ordinates, Cartesian velocity 
components and a pressure-velocity-coupling algorithm adequate for non-staggered grid systems. The 
capability of the method and the overall performance of the k-c eddy viscosity model are demonstrated by 
calculations of 2D and 3D flow over a hill. Solution error estimations based on fine grids, e.g. 320 x 192 
control volumes, together with comparisons with standard turbulence model modifications, low-Reynolds- 
number or streamline curvature effects, have allowed the investigation of model drawbacks in predicting 
turbulent flows over surface-mounted hills. 
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1. INTRODUCTION 

The understanding and capability of calculating turbulent separated flows on streamlined 
surfaces are relevant for a wide range of problems in industrial and environmental engineering. 
The flow over a convex/concave surface such as a hill presents strong favourable and adverse 
pressure gradients, streamline curvature with stabilizing and destabilizing effects on turbulence, 
a detachment line that is not fixed, contrary to flows over sharp edges, and very high velocity 
gradients in the near-wall region on the top of the hill. These effects raise questions on the 
adequacy of the turbulence model assumptions used in different flow regions' -3 as well as on the 
numerical accuracy of the flow predictions. In addition, 3D effects may occur in nominally 
two-dimensional separated turbulent shear flows (see e.g. Reference 4). 

For flows involving complex geometries a body-fitted co-ordinate system should be used. 
Several formulations of the equations have been applied (see e.g. References 5-7). In this work 
a strong conservation form of the equations is used together with non-staggered non-orthogonal 
grid systems. Predictions are reported for 2D and 3D confined turbulent flow over a hill and 
compared with experimental values at the centre channel plane.* Non-staggered grid systems are 
preferred because there is only one set of control volumes, which simplifies the code. Further- 
more, the pressure-velocity-decoupling problem is not overcome by the use of staggered grid if 
curvilinear co-ordinates are used. In order to ensure pressure-velocity coupling in a non- 
staggered grid system, the pressure-weighted interpolation method was used (see e.g. Reference 7). 

027 1-209 1/92/040423-19$09.50 
0 1992 by John Wiley & Sons, Ltd. 

Received February 1991 
Revised May 1991 



424 P. J. COELHO AND J. C. F. PEREIRA 

The aim of this work is to validate the general numerical method developed for the solution of 
the complete Reynolds-averaged Navier-Stokes equations. The numerical solution errors are 
estimated with a technique based on Richardson extrapolation'. lo and sufficiently fine grids are 
employed to ensure numerically accurate and nearly grid-independent results. Moreover, unlike 
most previous predictions of separated flows that have been conducted for flows over sharp edges, 
the present flow configuration adds a case study to the literature that will assist the understanding 
of the performance of the standard k-e eddy viscosity model for wall-bounded separated flows. 

Numerical predictions of turbulent flow over hills are scarce but are of great relevance for 
a wide range of turbulent separated flows (see e.g. the review article by Simpson"). Specific 
objectives of this work are: comparison of 2D and 3D predictions at the central plane; compari- 
son of the predictions obtained with wall functions and the low-Reynolds-number k-e model; 
comparison of the standard k-c and a streamline curvature correction model. 

Section 2 presents the equations and the discretization procedure. In Section 3 detailed 
comparisons with the available experimental data are made after a detailed investigation of the 
numerical accuracy of the results. A discussion of the results is presented in Section 4 and the 
paper ends with summary conclusions. 

2. THE MATHEMATICAL FORMULATION 

2.1. Governing equations 

a co-ordinate-free form as 
The governing equations expressing conservation of mass and momentum can be written in 

a P  
at 
-+ div ( pv) = 0, 

a 
at 
-(pv)+div(pv Ov)=divT+S,, 

where the stress tensor for a Newtonian fluid is given by 

T = ,u[ grad v +(grad v ) ~ ]  -( p +$p div v)l. (3) 
In these equations p is the density, ,u is the dynamic viscosity, p is the static pressure, v is the 
velocity vector and I is the second-order unit tensor. The source term S, accounts for the body 
forces. 

Depending on the choice of the velocity components (e.g. Cartesian, covariant or contravariant 
components), there are different choices for splitting the vectorial momentum equation (2). Here 
the Cartesian components are used, leading to the following form of the momentum conservation 
equation: 

a 
- (p i )  + div( pvui) = div ti + SUi, at (4) 

where ui is the Cartesian velocity component along direction i with base vector ii and ti is given by 

(5 )  
When the divergence operator is expressed in the strong conservation form, the governing 

t i=T. i i=p  [grad ui+(grad ~ ) ~ - i ~ ] - ( p + # , u d i v v ) i ~ .  
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equations (1) and (4) can be written as 

where 

A repeated index denotes summation over the three spatial components. The non-orthogonal 
co-ordinate system (tl, gz, t3) and the Cartesian co-ordinate system (xl, x2, x3) are related by the 
co-ordinate transformation xi =xi ( { ' )  whose Jacobian is denoted by J .  

Since the flow under consideration is turbulent, the common approach of Reynolds velocity 
decomposition was used. The momentum conservation equation in time-averaged form appears 
as 

a i a  . i a  - 
-( p ~ ) + - - ( p ~ B : ~ ) = - - [ ( ~ - p u U 6 U : ) B f ] + S a ,  
at J a p  J a p  

where the overbar denotes a mean value and the fluctuating components are identified by the 
turbulent Reynolds stress tensor m. Closure of the equations requires a turbulence model and 
in this study the well-known k-E eddy viscosity turbulence model12 and a low-Reynolds-number 
k-E turbulence model' were used. In this first-order closure the Reynolds stresses are expressed 
by a turbulent viscosity and Boussinesq approximation yielding the following relationship in 
tensor notation: 

The turbulent viscosity pt is defined as 

(12) 
kZ 

Pi = c,f, P 3 

where C, and fp are constants of the model, k is the turbulent kinetic energy and E is the 
dissipation rate. Transport equations are solved for these two quantities. 

The complete set of equations to be solved for a steady, incompressible, turbulent flow can be 
written (the overbars are dropped for simplicity) in the form 

(1 3) 
a 

ag' ( Puk Bjk) =o, 
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where p stands for the laminar viscosity. The generation of turbulent kinetic energy G can be 
expressed as 

Standard values were assigned to all the constants of the k--E model (C,, C1, C2, ok, oe)14 for 
which f,, fl and f2 are equal to unity. When the low-Reynolds-number model is used the 
constants C,, C1, C2, (Tk and oE remain the same and f,, fi and f2 are chosen according to the 
model proposed by Lam and Bremhorst13 as listed in Table I. 

2.2. Discretization procedure 

The finite volume/finite difference method is used to discretize the governing equations 
(13)-(16) over a non-staggered mesh. These equations can be written in the form of a general 
transport equation for discretization purposes as 

Table I1 lists the contributions of l-, and S ,  for each &equation. 

Table I. Functions for the low-Reynolds-number k-E 
turbulence model 

f, = [ 1 - exp( - 0.0165 R,)]' x (1 + 205/RT) 

f2 =l-exp(-R+) 
R T = p k 2 / p  
R, = pk'"y/p 

fi = 1 + (O.OS/~J~ 

~~ ~~~ 

Table 11. Diffusion coefficients and source terms of the governing equations 

1 0 0 

P + k  

E 



TURBULENT FLOW OVER A HILL 427 

The transport equation (18) is integrated over each control volume in the computational 
domain (see Figure 1) and the Gauss divergence theorem is applied. The convective term is 
discretized as 

jv $ ( PUkbjk $1 dV= Fe $e - Fw $w + Fn$n - F s $ s  + Fd4d-F" $u, (19) 

where subscripts e, w, n, s, d and u stand for east, west, north, south, downstream and upstream 
cell faces respectively. The mass flux through the east face, for example, is given by 

(20) Fe = P ~ ( u ,  P i  + uzbi  + u j  B: )e, 

X' 

D 

T 

Figure 1. Typical control volumes: (a) physical domain; (b) computational domain 
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where it is assumed that A<'= 1. In order to calculate the values of the dependent variable at the 
cell faces, the hybrid central/upwind convection discretization scheme15 was used. Although the 
scheme induces a truncation error that leads to 'artificial numerical diffusion', this could be 
minimized in the present study by the use of non-orthogonal grids (small velocity skewness with 
grid lines) and a large number of control volumes. 

The discretization of the diffusion term yields 

where 

and similarly for the other faces. Since A<'= 1 and 

JAC' A t 2 A t 3  = SV, 

where SV is the cell volume in the physical domain, equation (22) can be simplified as 

The first term represents a normal derivative and the others are cross-derivatives that are 
explicitly incorporated in the source term. 

The pressure term is discretized as follows, taking for example the momentum conservation 
equation for velocity component u1 : 

1" ( P B i )  dV= ( P e  - P w )  ( B :  )P + (Pn -PA (a:)p+( Pa - P U N  8:)P, (25) 

where subscript P refers to the central grid node P. 

practices: 
The source terms in equations (1 3)-( 16) are integrated following standard discretization 

The discretized transport equation is obtained after assembling all the terms discretized above to 
yield the algebraic equation 

where the summation extends over the neighbours of grid node P. The coefficients ai are related to 
the convection and diffusion fluxes and the coefficient b accounts for the contribution of the 
source term. 

2.3. Pressure-velocity coupling 

When non-staggered grids are used and the velocity components at the cell faces are calculated 
using linear interpolation, decoupling between pressure and velocities can occur leading to 
spurious pressure oscillations. During the last decade several alternatives have been devised to 
avoid this problem. 
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The method described by Rhie and Chow16 to avoid pressure-velocity decoupling is used in 
the present work and underrelaxation is introduced following the recommendations of References 
17-20. In this method the velocity at a cell face (east, for example) is calculated as 

C a k ( U i ) k  + b' - ( ~ n  -ps)Bi2 - ( P d  -PJ B? 
-a,, ( g )  (pE-pP)+(l-u,,)u:;d. (28) 

Here uWi is the underrelaxation factor for the velocity ui and b' is the source term of the discretized 
momentum equation which does not include the pressure terms that were written explicitly. The 
overbar denotes a linear interpolated value between grid nodes P and E (see Figure 1). It can be 
seen that the cell face velocity depends on the pressures at the two neighbouring nodes as in the 
staggering practice and this is the reason why coupling between pressure and velocities is ensured. 

The well-known SIMPLE algorithm was used with minor modifications arising from the use of 
non-staggered grids (see Reference 19 for details). 

In the derivation of the pressure correction equations the pressure gradients along the cell face, 
arising from non-orthogonality of the grid lines, were neglected. This is a common approach 
which has been analysed recently by He concluded that provided the departure from 
non-orthogonality is not too severe, it is computationally more efficient to neglect the non- 
orthogonality terms. Another common procedure is to include the cross-derivative diffusion 
fluxes in the source term of the discretized equations. These terms arise from non-orthogonality of 
the grid lines and so this approach can lead to an increase in CPU time when the skewness of the 
grid lines is significant. 

The two aforementioned simplifications were made becake they do not affect the solution 
accuracy and they lead to discretized equations which involve only seven coefficients relating the 
variable value at grid node P with its six closest neighbours. The solution of these equations was 
carried out by the strongly implicit method.22323 Convergence is achieved when the normali2ed 
absolute residual sums decrease below a given level, taken as for all the dependent variables. 

i k  aP ). a p  

ui*, = u,, 

2.4. Flow configuration and numerical grid generation 

The water flow configuration over a two-dimensional hill is presented in Figure 2. The hill 
height is H = 2 8  mm and the base length is equal to 3.858. The two-dimensional hill spans 
a channel of 6.07H width and 7.1H height. The hill blockage ratio is 1 : 7.1 and the aspect ratio 
(hill height/channel width) is 1 : 6. The relatively low aspect ratio may induce flow three-dimen- 
sionality, which will be numerically investigated in the next sections. 

Measurements in this water tunnel, which was made with Perspex walls to allow optical access, 
were obtained' for ReH = 6 x lo4. Velocity was measured by a laser-Doppler velocimeter oper- 
ated in the dual-beam, forward-scatter mode with sensitivity to the flow direction provided by 
light frequency shifting from acousto-optic modulation (Bragg cells). In the experiments the 
number of individual velocity values used to form the averages was always above 10 0oO and the 
largest statistical errors are estimated to be 0.5 and 3% respectively for the mean and variance 
values. 

For three-dimensional fluid flow configurations the physical domain is discretized in control 
volumes bounded by six faces and defined by the co-ordinates of the eight vertices. Several 
numerical grid generation techniques can be used for this purpose.24 One of the most popular 
techniques consists of the solution of a system of elliptic Poisson equations. The source terms of 
these equations can be used to control the location of the grid nodes and there are several 
different proposals regarding the choice of the source terms.24 This method could easily be 
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Figure 2. Geometry of turbulent flow over a hill 

(b) 

Figure 3. Typical meshes: (a) 2D flow (40 x 30 grid nodes); (b) 3D flow (40 x 30 x 20 grid nodes) 

applied here as well. However, in this work an algebraic grid generation was preferred in order to 
allocate easily high-mesh-density regions as well as changing the grid spacing in order to conduct 
error estimation analysis. Although this could be done using an elliptic grid generator, it is 
simpler to apply an algebraic grid generation technique. 

The boundary points at the lower and upper channel walls are selected and connected by 
straight lines. The distribution of points along the x-direction is chosen in order to con- 
centrate the grid nodes in steep-velocity-gradient regions. The grid generated is repeated 
for each y = constant plane. In the computational domain each control volume is a cube with 
A t 1  = A t z  = A t 3  = 1. Figures 3(a) and 3(b) show examples of non-orthogonal grids for two- and 
three-dimensional configurations respectively. 
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2.5. Boundary conditions 

The inlet boundary was located 14.3H upstream of the centre of the hill. At this section the 
influence of the hill may be neglected and fully developed turbulent flow conditions prevail. The 
inlet boundary conditions were prescribed according to the experimental data for undisturbed 
flow.8 For three-dimensional calculations the inlet quantities were taken from the measure- 
m e n t ~ ~ ~  obtained in the entire channel cross-section without the hill. Dissipation of the turbulent 
kinetic energy was estimated based on hydraulic channel radius as the length scale. At the outlet 
section, located 18H downstream of the top of the hill, zero gradient was assumed for all 
dependent quantities. 

The near-wall flow region was carefully investigated. Two approaches were followed. The first 
corresponds to the basic standard wall function approach where the wall fluxes for the wall- 
parallel velocities are calculated according to Launder and Spalding,I4 assuming in the first 
control volume close to the wall a logarithmic velocity profile, a constant-stress layer and local 
equilibrium of the turbulence. The convective and diffusive wall fluxes for turbulent kinetic energy 
are set to zero and production rates are calculated from the wall shear stresses evaluated from the 
wall function. The dissipation rate is calculated by integration of production. At the nodal points 
close to the wall the dissipation rate equation was not solved and &-values were prescribed 
according to local equilibrium (i.e. the production rate of turbulent kinetic energy equals its 
dissipation rate). 

The second approach does not use wall functions; instead the ‘low-Reynolds-number’ k--E 
model was employed (see e.g. Reference 1). The Lam-Bremhorst model13 was used by including 
the damping effect functionals listed in Table I in equations (12) and (16). This model requires 
a high grid resolution close to the wall. At the inlet plane 30 grid nodes in the vertical direction 
were used to cover the region O<y+ G50, where the non-dimensional co-ordinate y +  is defined 
as U,y/v. The turbulent quantities up to y+=80 were taken from the non-dimensionalized 
equilibrium boundary layer data presented by Pate1 et al.’ 

3. RESULTS 

3.1. Error estimation analysis 

Calculations using the standard k-c model were performed with five different grids: 40 x 30, 
80 x 60, 160 x 120, 160 x 240 and 320 x 192 grid nodes in the z- and x-direction respectively. The 
sensitivity of the numerical solutions to grid refinement is examined by comparing the predicted 
location of the separation and reattachment points for each grid (see Figure 4). The results show 
that the location of the separation point is in close agreement with the experimental data (shown 
by the horizontal line) for the three finer meshes. The predicted length of the recirculation zone 
increases with grid refinement approaching the experimental recirculation length. 

A grid consisting of 160 x 200 control volumes was considered for the calculations using the 
low-Reynolds-number model. It yields a very good prediction of the reattachment point location 
but separation seems to occur too close to the top of the hill. The experimental separation point is 
estimated from the axial velocity measured 1 mm from the wall. When the low-Reynolds-number 
model is used, the distance from the first row of nodes to the wall is about 0.01 mm (3.5 x 10-4H) 
and this explains the observed difference. If the predicted separation point were estimated from 
a row of nodes at a distance of 1 mm from the wall, the separation point location would be in 
excellent agreement with the experimental data. Hence the low-Reynolds-number model leads to 
a better prediction of the length of the recirculation zone than do standard wall functions. 
However, as will be analysed in Section 4, this is not a general conclusion. 
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Figure 4. Prediction of location of separation ( Z , )  and reattachment (Z , )  points as a function of number of grid nodes ( N )  
(0, A, standard k-& model; +, x ,  low-Reynolds-number model; -, experimental data) 

As mentioned in Section 1, the numerical accuracy of the results was carefully investigated. The 
strategy used in this work follows the proposed standard technique of performing calculations on 
a sequence of refined grids, retaining the same discretization ~ c h e m e . ' ~ . ~ ~ '  27 Comparing error 
estimation and false diffusion errors, it has been found" that numerical errors can be high even in 
regions where false diffusion is not significant, owing to the transport of false diffusion errors. 
Therefore the following analysis is based on error estimation. Solution error estimation was 
carried out by Richardson extrapolation, comparing the numerical solutions obtained with 
80 x 60 and 160 x 120 control volumes. The solution errors are proportional to the difference 
between solutions on two consecutive grids as shown in Figure 5(a) for the streamwise velocity 
field. The contours represent the values of I wh - W2hl/ Wo, where wh and w 2 h  are the streamwise 
velocities on the finer and coarser meshes respectively and Wo is the mean bulk velocity at the 
inlet plane. The contour values are a measure of the local solution error on the finer grid 
(160 x 120). It can be seen that errors up to 10% are concentrated in a region close to the 
separation point. However, in the major part of the computational domain the solution errors do 
not exceed 5%. A similar analysis conducted on 160x98 and 320x 192 grid systems yielded 
similar error contours but with maximum errors of 5%. The solutions obtained with 320 x 192 
control volumes were considered to be satisfactory to distinguish the numerical errors from 
turbulence closure assumptions in the predictions. 

The error estimation analysis conducted for turbulent kinetic energy (for meshes with 80 x 60 
and 160 x 120 grid nodes), non-dimensionalized by the maximum value of k calculated on the fine 
grid, yields a maximum error smaller than 20% (see Figure 5(b)). This is much smaller than the 
large estimated errors found by Kessler et a[." for the flow around a surface-mounted square 
obstacle. This may be explained by the different body configuration and by the use of non- 
orthogonal grid co-ordinates, which decrease the velocity vector skewness with the grid lines and 
so decrease numerical false diffusion. The same estimation based on non-dimensionalization by 
Wz rather than by maximum k yields negligible errors. 

The above solution error estimation suggests that numerical diffusion is not a major error 
source owing to the high number of grid points used (320 x 192) and that the comparison between 
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0 < 0 < 0.01 
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0.01 < < 0.02 

0.02 < < 0.05 

0.05 < c 0.10 

0.10 < < 0.15 

0.15 < < 0.20 

Figure 5. Contours of estimated solution errors: (a) streamwise velocity; (b) turbulent kinetic energy 

predictions and measurements which follows may be interpreted as a test for the performance of 
the turbulence model assumptions used to predict this complex flow. 

3.2. Comparison between two- and three-dimensional flow predictions 

The motivation for investigating three-dimensional effects on the flow at the centre channel 
plane arises from the rather small aspect hill ratio of 1 : 6 reported in the measurements. The value 
of 1 : 10 was recommended by de Brederode and BradshawZ8 for flows over sharp edge, sudden 
discontinuity surfaces to avoid three-dimensional effects at the centre channel plane. 

Calculations were carried out with a coarse grid ( 8 0 x 6 0 ~ 2 0 )  and compared with 2D 
predictions obtained with the same grid (80 x 60) in the z-x-plane. For comparison purposes it is 
important to carry out 3D predictions using exactly the same grid in the z-x plane as for the 2D 
predictions. The 3D predictions show that close to the bottom surface the flow is three- 
dimensional in the separated flow region. Figure 6(a) shows the predicted detachment and 
reattachment lines across the channel. The corner flow close to the side walls interacts strongly 
with the low-momentum streamwise flow, yielding a smaller separated flow region than at the 
centre channel plane. 

Figure 6(b) shows profiles of the streamwise velocity component across the channel from the 
side wall to the centre channel plane at several distances from the bottom at z/H =2.5. The figure 
shows that for x/H < 0.2 the flow presents a large region where three-dimensional effects are 
important but they do not contaminate the centre plane. This can also be concluded from 
Figure 6(c), where the streamwise velocity at the nearest grid point close to the wall is displayed as 
a surface plot. Although the flow is strongly affected by the side walls, it remains almost 
two-dimensional at the centre plane, as can be inferred from the comparison between 2D and 3D 
predictions for the streamwise and normal velocity component profiles shown in Figure qd). 

Despite the implications of secondary channel flows driven by turbulence and side wall effects 
(see e.g. Reference 29), one can conclude that the 3D predictions using the k--E eddy viscosity 
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Figure 6. Results of three-dimensional computations: (a) location of separation and reattachment points; (b) spanwise 
profiles of streamwise velocity; (c) perspective of predicted streamwise velocity; (d) comparison of 2D and 3D predictions 

with experimental data (0, experimental data; -, 2D predictions; ---, 3D predictions) 
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model at the centre plane are virtually identical to the 2D predictions. Thus the remaining 
predictions that follow were obtained with a two-dimensional flow assumption. 

3.3. Comparison between ‘low-Reynolds-number’ and wall function near-wall treatments 

All the predictions that follow were obtained with a mesh comprising 320 x 192 grid nodes for 
the k--E wall function treatment and with a 160 x 200 grid for the low-Reynolds-number k--E 
model. The grid density corresponding to 320 x 192 was very high in the shear layer region, while 
for the low-Reynolds-number predictions this occurs in the near-bottom-wall region. Figure 7 
shows the computed streamlines. The flow separates at z / H  = 0.43 and reattaches at z / H  = 4.64 
and therefore the length of the separated flow region is well predicted within 5% compared with 
the measurements. When standard wall functions are used, the recirculation length is also well 
predicted. 

There are still questions about how very small geometrical inaccuracies in the experimental 
configuration may induce relevant fluid flow perturbations or modifications. The very high 
number of grid nodes close to the surface used with the low-Reynolds-number k--E model is 
adequate to analyse the above influences. With such a high number of grid nodes the shape of the 
hill is described very well and the polygonal contour obtained by joining the points on the 
boundary matches the curvilinear shape of the hill with an error less than or equal to 10-4H. 
Therefore the departure of the computed hill shape from the actual hill shape can be neglected for 
all practical purposes. Figure 8 shows the hill surface details taken from a careful inspection of the 

Figure 7. Streamlines of 2D flow over a hill 

Figure 8. direction) 
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two-dimensional hill surface used in the experimental investigation.* The low-Reynolds-number 
predictions display three microscopic separated flow regions. Although these regions cannot be 
detected experimentally (they are of the same order of magnitude as the laser beam control 
volumes), they are expected physically and are a consequence of the non-smooth transition 
between the surface of the hill and the bottom wall and also of the shape of the curved surface at 
the top of the hill. The height of the sharp edge at the base of the hill is negligible compared to the 
hill height but high enough compared to the dimensions of the control volumes in the x-direction 
( x / H  = 3.5 x 10 pm close to the wall). Consequently, the presence of the sharp edge is felt 
when using a very large number of control volumes in the near-wall region as required by 
a low-Reynolds-number turbulence model. 

The convergence criterion for the predictions obtained with the low-Reynolds-number model 
was the same as for the wall function predictions, although the number of iterations required to 
achieve normalized residuals for mass and momentum smaller than has almost doubled. 
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Figure 9. Comparison of predicted and measured velocity profiles (0, experimental data; -, standard k-6 model; 
_-_  , low-Reynolds-number model): (a) streamwise velocity; (b) crosswise velocity 
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Figures 9(a) and 9(b) show the streamwise and normal velocity predictions obtained with wall 
functions and the low-Reynolds-number model at different stations from z / H =  - 1.78 to 17.8. 
Both k--E model near-wall versions yield virtually identical results in the main flow region. 
Relatively large differences were obtained close to the wall, where the predicted friction coefficient 
with wall functions was higher than that predicted by the low-Reynolds-number model. The 
predicted mean velocity components are in good agreement with the measurements, except on the 
top of the hill where the data display a deeper velocity gradient and after the reattachment point 
where the predictions display too slow a recovery to fully developed channel flow. 

The normal and shear stress predictions are shown in Figures lqa)-lO(c). Although the profile 
shapes are identical, very large discrepancies are depicted in the figures and some of them (strong 
underprediction of shear stresses surrounding the separated flow region) are not expected 
comparing the performance of the k--E eddy viscosity with other turbulent shear flow predictions. 
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Figure 10. Comparison of predicted and measured turbulent quantities (0, experimental data; -, standard k--E model; 
- _ -  , low-Reynolds-number model): (a) streamwise normal stress; (b) crosswise normal stress; (c) shear stress 
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4. DISCUSSION 

It is important to mention that the agreement between mean flow predictions and experiments 
presented in Figures 9(a) and 9(b) is surprisingly good compared with other separated shear flows 
(e.g. step flow and obstacle f l o ~ , ~ ' . ~ '  disk It is well known that the empirical wall 
function formulae do not scale well at reattachment and inside separated flow regions (see e.g. 
Reference 11); neither can the low-Reynolds-number model used predict correctly the effects of 
adverse pressure gradients on shear layers (see e.g. References 1,2 and 33) or the &-distribution in 
the near-wall 3 5  The good agreement between the wall function and low-Reynolds- 
number k-& near-wall treatments suggests that near-wall turbulent characteristics do not play an 
important role in this flow configuration and that there is a rather weak dependence of the overall 
flow field on the near-wall region. 

Figures lO(a)-lqc) show the normal and shear stress predictions. The profiles display an 
underprediction of momentum diffusion in the shear layer around the separated flow region 
(shear and normal stresses), contrary to the predictons of backward-facing step flow (see e.g. 
Reference 30). However, the turbulent transport of momentum after the reattachment point is 
satisfactorily predicted, but there is still significantly slower flow recovery in this region. Thus the 
k-& eddy viscQsity predictions are not in agreement with other similar separated shear flows and 
the results suggest that the physics of the flow is not well kept. 

According to Thompson and white la^^^ and Simpson," immediately upstream of the mean 
flow separation the pressure gradient and convective terms dominate, with the components of the 
normal momentum equation tending in magnitude to those of the streamwise momentum 
equation as separation is approached. Under adverse pressure gradient conditions the model is 
expected to produce too large length scales at the reattachment point. Inside the separated flow 
region, turbulent diffusion is important in the streamwise momentum equation and is almost 
balanced by the pressure gradient. The same occurs in the k-equation, where production is small 
and diffusion is balanced by dissipation. Figures 1qa)- lqc) show that inside and surrounding 
the separated flow region there is a strong underprediction of normal and shear stresses. The 
importance of normal and shear stresses would suggest an overprediction in the reattachment 
length. This does not occur and a possible explanation may be attributed to the role of the normal 
momentum equation. By careful inspection of Figures 9(b) and lqb) and assuming that the 
pressure gradient is of the same order of magnitude in the two momentum equations, the balance 
between normal stress terms and pressure gradient should be correct in the normal momentum 
equation. Thus the normal velocity component is satisfactorily predicted, as is the streamwise 
component inside the separated flow region. The magnitude of the turbulent stresses is incorrect 
but their gradient is correct. 

In the downstream reattachment region the slower recovery to fully developed flow cannot be 
attributed to the shear stresses, which are satisfactorily predicted (see Figure lqc)). In this region 
the momentum equation budget implies that convection is balanced by momentum diffusion, 
which is well predicted (see Figure lqc)). However, the two convective terms are important 
immediately after reattachment owing to the high normal velocities close to the wall. The 
convective term d p  uw/dx is underpredicted because the normal velocity profile after reattach- 
ment is underpredicted (see Figure 9 (b)). As a consequence the streamwise velocity component 
profiles display a much slower recovery towards developed conditions. It is interesting to note 
that in this region the good agreement shown in Figures 10 (a) and lO(c) between predictions and 
measurements is obtained by an overestimation of turbulent viscosity and an underestimation of 
mean strain rates, which is in agreement with a length scale overestimation close to reattachment. 
The same slower recovery to fully developed velocity profiles has been reported in a wide variety 
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Figure 11. Contours of C, predicted with k-E turbulence model with streamline curvature correction 

of separated flows (e.g. second-order momentum closure predictions of obstacle large- 
eddy simulation of backward-facing step 

The above discussion has ignored the contribution of streamline curvature to the turbulence 
field. Strong boundary-induced streamline curvature is expected with destabilizing effects on the 
convex regions and stabilizing effects on the concave regions. To include these effects in the k-E 
eddy viscosity model, the C,-functionalization proposed by Leschziner and R ~ d i ~ ~  was used. 
Although such functionalization was developed for axisymmetric flows, a similar derivation can 
be easily made for 2D planar flows. The final C,-function does not change provided that similar 
assumptions are used in its derivation. Contours of the predicted C,-values are shown in 
Figure 11 that clearly agree with the above streamline curvature influence on the turbulence field 
via eddy viscosity. Owing to lack space, we do not present all the predictions again. The main 
conclusions of the above predictions may be summarized as follows: up to the top of the hill the 
C,-functionalization has improved the predictions of mean and turbulent quantities but fails 
completely to improve the flow field in the separated region. The increases in the shear and 
normal stresses have consequently decreased the back flow in the streamwise velocity profiles and 
increased the maximum negative velocities very close to the wall. Thus the streamline curvature 
modification did not bring the mean flow predictions closer to the data after the detachment 
point as in other curved flows (see e.g. Reference 39). 

Finally, the present test case has shown that the k-E eddy viscosity model has produced 
satisfactory predictions of the mean velocity field, though it has not represented either the 
turbulent flow structure or the physics of the flow. As described by Simpson" and Goldberg and 
c o - ~ o r k e r s , 4 ~ - ~ ~  the mechanisms of turbulence near detachment within separated regions and 
reattachment are not conveyed by either the k-& eddy viscosity or most other currently used 
turblence models. The present predictions have clearly reduced the numerical errors and we have 
tried to propose a new test case for numerical methods and turbulence models with the aim that it 
will receive similar attention to backward-facing step flow. The present predictions should be 
compared with 2D and 3D second-moment closures to give additional understanding of the 
physics and modelling aspects of the flow. 

The numerical method presented can be applied directly to real hills of any shape. The 
inclusion of an energy equation is required to treat stratified flow problems. However, the 
accuracy of turbulence models for stratified flows is outside the scope of this paper. 

5. CONCLUSIONS 

A numerical method for the solution of the complete Reynolds-averaged Navier-Stokes equa- 
tions for general two- or three-dimensional incompressible flows has been presented. The method 
uses non-orthogonal co-ordinates while retaining the velocity components in a Cartesian co- 
ordinate system at the centre of a non-staggered grid. 
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Calculations were performed for the flow over a hill. The following conclusions could be 
derived. 

(i) Solution error estimation analysis proved that very fine grids are required to decrease 
numerical errors. The maximum number of control volumes used (320 x 190) yielded 
maximum errors for the velocity components of around 5%. 

(ii) Although the present flow configuration presents an aspect ratio of 1 : 6, no three-dimen- 
sional effects on the centre channel plane were predicted by the k-e eddy viscosity model. 

(iii) Predictions obtained with the wall function and low-Reynolds-number model near-wall 
treatments yield virtually identical results. 

(iv) The flow around a hill induces convex/concave streamline curvature. The C,-functionaliz- 
ation used to take into account streamline curvature effects on turbulence did not prove to 
be useful after the detachment point. 

(v) Surprisingly, the k-e eddy viscosity model predictions yield good comparisons with the 
experimental separation length and mean flow field. However, the model could not capture 
the physics of the flow concerning the turbulent field. 
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